Mark Scheme (Results)

January 2019

Pearson Edexcel International
Advanced Subsidiary Level
In Chemistry (WCH02)
Paper 01 Application of Core Principles of
Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2019
Publications Code WCHO2_01_1901_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is
essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Answer	Mark
$\mathbf{1}$	The only correct answer is C	$\mathbf{1}$
	A is not correct because the molecule has two tetrahedral carbons	
	B is not correct because the molecule has a tetrahedral carbon	
	D is not correct because the molecule has a tetrahedral carbon	

Question Number	Correct Answer	Mark
$\mathbf{2}$	The only correct answer is B	$\mathbf{1}$
	A is not correct because it does not contain a 120° bond angle	
	C is not correct because it does not contain a 90° bond angle	
D is not correct because it contains neither bond angle		

Question Number	Correct Answer	Mark
$\mathbf{3}$	The only correct answer is B A is not correct because the $\mathrm{N}-\mathrm{H}$ bond is less polar than the O-H bond C is not correct because the C-Cl bond is less polar than the O-H bond D is not correct because the C-I bond is less polar than the O-H bond	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{4}$	The only correct answer is D	$\mathbf{1}$
	A is not correct because the molecule is non-polar B is not correct because the bond is polar \mathbf{C} is not correct because the bond is polar and the molecule is non- polar	

Question Number	Correct Answer	Mark
$\mathbf{5}$	The only correct answer is A	$\mathbf{1}$
\mathbf{B} is not correct because both effects are incorrect		
\mathbf{C} is not correct because the effect of increasing chain length is to		
increase the boiling temperature		
D is not correct because the effect of increasing branching is to		
decrease the boiling temperature		

\hline\end{array}\right.\)

Question Number	Correct Answer	Mark		
$\mathbf{6}$	The only correct answer is A			
B is not correct because HF has the highest boiling temperature				
C is not correct because HF has the highest boiling temperature				
and HCl the lowest				
D is not correct because the trend for HI, HBr and HCI is incorrect			\quad	
:---:				

Question Number	Correct Answer	Mark		
$\mathbf{7}$	The only correct answer is D \mathbf{A} is not correct because metal nitrites only form with some Group 1 nitrates B is not correct because metal oxides do not form with some Group 1 nitrates	$\mathbf{1}$		
\mathbf{C} is not correct because nitrogen dioxide only forms with Group 2				
and lithium nitrates			\quad	
:---				

Question Number	Correct Answer	Mark
$\mathbf{8}$	The only correct answer is D	$\mathbf{1}$
	A is not correct because hydrogen bromide usually forms first	
B is not correct because bromine forms		
C is not correct because sulfur dioxide forms		

Question Number	Correct Answer	Mark
$\mathbf{9}$	The only correct answer is C A is not correct because chlorine disproportionates from 0 to +1 and -1 B is not correct because chlorine disproportionates from 0 to +5 and -1	$\mathbf{1}$
	D is not correct because chlorine disproportionates from +5 to +7 and -1	

Question Number	Correct Answer	Mark
$\mathbf{1 0}$	The only correct answer is A \mathbf{B} is not correct because this is the effect of lowering the temperature C is not correct because this is the effect of increasing the temperature \mathbf{D} is not correct because the area under the curve does not change	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 1 (a)}$	The only correct answer is B	$\mathbf{1}$
	A is not correct because both effects are incorrect	
C is not correct because the yield increases		
D is not correct because the rate decreases		

Question Number	Correct Answer	Mark
$\mathbf{1 1 (b)}$	The only correct answer is D	$\mathbf{1}$
	A is not correct because the yield increases	
B is not correct because the rate increases		

Question Number	Correct Answer	Mark
$\mathbf{1 1 (c)}$	The only correct answer is C	$\mathbf{1}$
	A is not correct because the quantities have been doubled	
B is not correct because the quantities have been doubled		
	D is not correct because the quantities have been doubled	

Question Number	Correct Answer	Mark		
$\mathbf{1 2}$	The only correct answer is D	$\mathbf{1}$		
A is not correct because the volume of $\mathrm{H}_{2} \mathrm{O}$ gas has been ignored				
\mathbf{B} is not correct because the volume of carbon dioxide has been				
ignored				
\mathbf{C} is not correct because the volume of excess oxygen has been				
ignored			\quad	
:---				

Question Number	Correct Answer	Mark
$\mathbf{1 3}$	The only correct answer is A	$\mathbf{1}$
	B is not correct because it is a primary alcohol	
C is not correct because it is a secondary alcohol		
D is not correct because it is a secondary alcohol		

Question Number	Correct Answer	Mark
$\mathbf{1 4}$	The only correct answer is A	$\mathbf{1}$
	\mathbf{B} is not correct because butane is not formed	
C is not correct because butane is not formed		
	\mathbf{D} is not correct because butene is not formed	

Question Number	Correct Answer	Mark
$\mathbf{1 5 (a)}$	The only correct answer is C	$\mathbf{1}$
	A is not correct because it is not an addition reaction nor electrophilic B is not correct because it is not an addition reaction nor nucleophilic	

Question Number	Correct Answer	Mark
$\mathbf{1 5 (b)}$	The only correct answer is D	$\mathbf{1}$
	A is not correct because it is not an addition reaction	
	B is not correct because it is not an addition reaction	

Question Number	Correct Answer	Mark
$\mathbf{1 6}$	The only correct answer is A	$\mathbf{1}$
	B is not correct because it is emitted in smaller amounts	
C is not correct because it is emitted in smaller amounts		
	D is not correct because it is emitted in smaller amounts	

Question Number	Correct Answer	Mark
$\mathbf{1 7}$	The only correct answer is B A is not correct because neither water vapour nor carbon dioxide depletes the ozone layer C is not correct because carbon dioxide does not deplete the ozone layer	$\mathbf{1}$
D is not correct because water vapour does not deplete the ozone layer		

Section B

Question Number	Acceptable Answers	Reject	Mark
18(a)(i)		ALLOW Open/solid circles for C atoms Skeletal structures	Atoms of any other element
IGNORE Number of tetrahedral units Fewer than four bonds to peripheral C atoms Stated bond angles	Any C atom with 5 (or more) bonds		

Question Number	Acceptable Answers	Reject	Mark
18(a)(ii)	Mark all points independently		3
	Shape: tetrahedral ALLOW Tetrahedron Any reasonable attempt at spelling	(1)	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (b) (i)}$	Diagram showing 2, 3, 4 or 5 interlocking hexagons with 13 to 19 carbons inclusive ALLOW 11 to 21 carbons	$\mathbf{2}$	
	e.g.		
	ALLOW Non skeletal diagrams IGNORE Number of bonds to peripheral carbons Additional layers	Any carbon with four (or more) bonds angle 120	

Question Number	Acceptable Answers	Reject	Mark
18(b)(ii)	London/dispersion force(s)/ van der Waals' ALLOW Any reasonable attempt at spelling Instantaneous dipole-induced dipole Induced dipole-induced dipole Temporary dipole-induced dipole IGNORE Intermolecular forces	Hydrogen bond (Permanent) dipole- dipole	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
18(b)(iii)	Graphite has delocalised electrons (and diamond does not) ALLOW Delocalised / free moving electron per atom or if linked to every carbon having three bonds Sea of delocalised electrons Graphite has some free moving electrons Electrons can move between layers Diamond does not contain delocalised electrons IGNORE Just free electrons Reference to charge carriers	Just one / a delocalised electron Lone pair of electrons Free moving electron Electrons move perpendicular to layers Any reference to graphite molecules	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (b) (i v) ~}$	Heat is not conducted at right angles to the layers	2	
	Heat is conducted well in the direction of / within the layers ALLOW Heat is conducted well between the layers / spread out evenly across the spacecraft Graphite has a high melting / boiling temperature	(1)	ALLOW Graphite can withstand high temperatures / is thermally stable / is inert IGNORE Soft / slippery / layers can slide Reference to reduced friction Malleable/mouldable Low density/weight

Question Number	Acceptable Answers	Reject	Mark
18(c)	(Buckminster)fullerene(s) / (carbon/fullerene) nanotubes / graphene ALLOW Buckyball(s) Any reasonable attempt at spelling (coal / carbon fibre	$\mathbf{1}$	
	IGNORE 'Carbon sixty'/C60 Amorphous carbon		

(Total for Question 18 = 11 marks)

Question Number	Acceptable Answers	Reject	Mark
19(a)(i)	- Hydrogen bonding ALLOW H -bond(ing) - London/dispersion / van der Waals' / instantaneous dipole-induced dipole / temporary dipole-induced dipole - Permanent dipole(-permanent dipole) IGNORE Just dipole-dipole All three Any two Any reference to a covalent bond with one or two correct intermolecular forces scores (0) Any reference to a covalent bond with three correct intermolecular forces scores (1)		2

Question Number	Acceptable Answer	Reject	Mark
19(a)(ii)	Butan-2-ol forms hydrogen bonds with water (making some dissolve) ALLOW Butan-2-ol cannot form H -bonds with water easily / forms H-bonds with water less easily than ethanol IGNORE Just butan-2-ol can/forms/has H-bonds London/dispersion forces between butan-2-ol molecules are relatively strong / stronger than in ethanol (limiting solubility) ALLOW London/dispersion forces in butan-2-ol are strong(er) ACCEPT van der Waals' / instantaneous dipole-induced dipole / temporary dipole-induced dipole forces for London/dispersion forces Energy released from intermolecular forces formed between butan-2-ol and water less than that required to break intermolecular forces (within butan-2-ol and water) scores (1) IGNORE Comparison of strength of London forces in butan-2-ol to H -bonding in water Reference to the number of H -bonds formed / in water/butan-2-ol/ethanol Reference to polarity of water/butan-2-ol/ ethanol / hydrophobic/hydrophilic properties	Cannot form H-bonds with water	2

Question Number	Acceptable Answer	Reject	Mark
19(b)(ii)	 Correct formula of sodium ethoxide ALLOW $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{(-)} \mathrm{Na}^{(+)}$ Rest of equation M2 dependent on M 1 or $\mathrm{O}-\mathrm{Na} / \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NaO} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NaO}$ ALLOW Multiples Fully correct equation for alcohol other than ethanol eg $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$ scores (1) IGNORE state symbols even if incorrect	$\begin{align*} & \mathrm{O}-\mathrm{Na} \\ & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NaO} \tag{1}\\ & \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NaO} \\ & \\ & \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O} \end{align*}$	2

Question Number	Acceptable Answer	Reject	Mark
19(c)(i)	Ethanoic acid (1)		2
	IGNORE		
	$\mathrm{CH}_{3} \mathrm{COOH}$		
	Displayed/skeletal formula		
	Carboxylic acid		
	Just ethanoic		
	Any one from:		
	- Fizzes / effervesces / bubbles / with sodium carbonate/ hydrogencarbonate / calcium carbonate ALLOW Gas produced turns limewater cloudy for fizzes etc	$\mathrm{PCl}_{5} /$ phosphorus(V) chloride	
	- Neutralises (a significant volume of) sodium carbonate/ hydrogencarbonate solution		
	- Fizzes / effervesces / bubbles with Mg /magnesium	Na /sodium	
	- Fruity smell (when heated) with an alcohol (in the presence of an acid catalyst)		
	No TE on M1 unless near miss e.g. $\mathrm{CH}_{3} \mathrm{COOH} /$ carboxylic acid		
	IGNORE		
	Tests involving indicators eg litmus		

Question Number	Acceptable Answer	Reject	Mark
19(c)(ii)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{3} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COCH}_{3}$ OR OR	Molecular formula	1

Question Number	Acceptable Answer	Reject	Mark
19(c)(iii)	Any two from: - Butan-2-ol has O-H peak/absorption/trough ALLOW OH/-OH/hydroxyl for O-H C-O/C-OH peak Wavenumber/stretch/vibration for peak etc Reverse argument for oxidation product IGNORE Alcohol absorption - Oxidation product has $\mathrm{C}=\mathrm{O}$ peak/absorption/trough ALLOW Carbonyl bond peak Butan(-2-)one/ketone/product for oxidation product Reverse argument for butan-2-ol - Both have different fingerprint regions IGNORE Different C-H absorptions Different C-C absorptions Wavenumbers, even if incorrect	Penalise omission of peak once only $\mathrm{OH}^{-} /$hydroxide $\mathrm{C}=\mathrm{O}$ Aldehyde C=O C-O	2

(Total for Question 19 = 13 marks)

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{2 0 (a) (i)}$	$2 \mathrm{I}^{-}+\mathrm{Cl}_{2} \rightarrow \mathrm{I}_{2}+2 \mathrm{Cl}^{-}$		$\mathbf{1}$
	ALLOW Multiples Spectator ions if crossed out IGNORE Full equation (as working) Half equations (as working) State symbols even if incorrect		

Question Number	Acceptable Answer	Reject	Mark
20(a)(ii)	Any suitable named liquid organic solvent e.g. hexane / cyclohexane	Any alcohol / alkene / arene	$\mathbf{2}$
	ALLOW Tetra / trichloro(m)ethane Hydrocarbon solvent	Halogenoalkane	
Pink / purple / violet / mauve	(1)		
	IGNORE Modifiers eg pale M2 dependent on M1		

Question Number	Acceptable Answer	Reject	Mark
20(a)(iii)	Sulfur / S oxidised from (+)2 to (+)2½ Iodine / / / I_{2} reduced from 0 to - 1 (1) OR Sulfur / S from (+)2 to (+) $2^{1 / 2}$ lodine / I/ I_{2} from 0 to - 1 and Sulfur / S oxidised lodine / I / I 2 reduced ALLOW Oxidation states from annotated equation	$\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ oxidised $\begin{equation*} \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-} \tag{1} \end{equation*}$ $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ oxidised	2

Question Number	Acceptable Answer	Reject	Mark
20(b)(i)			$\mathbf{1}$
		IGNORE Bond angles and bond lengths Displayed / structural formulae even if incorrect	

Question Number	Acceptable Answer	Reject	Mark
20(b)(ii)	There is only one (stable) isotope of iodine ALLOW No isotopes of iodine (Both) chlorine and bromine have two isotopes Chlorine has ${ }^{35} \mathrm{Cl}$ and ${ }^{37} \mathrm{Cl}$ and / or bromine has ${ }^{79} \mathrm{Br}$ and ${ }^{81} \mathrm{Br}$ ACCEPT Chloro- / chloride for chlorine Bromo- / bromide for bromine	Isomer	1

Question Number	Acceptable Answer	Reject	Mark
20(b)(iii)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{+}$ ALLOW $\begin{equation*} \mathrm{C}_{3} \mathrm{H}_{7}^{+} \tag{1} \end{equation*}$ Displayed formula IGNORE Position of positive charge The C-I bond breaks (may be shown on a diagram) IGNORE Loses iodine	Omission of charge $\mathrm{CH}_{3} \mathrm{CHCH}_{3}{ }^{+}$ Just fragmentation	2

Question Number	Acceptable Answer	Reject	Mark
20(c)(i)	Yellow		Pale yellow
	ALLOW Bright yellow Silver iodide IGNORE AgI	$\mathbf{(1)}$	
$\mathbf{2}$	(1)		

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{2 0 (c) (i i)}$	$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{I}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgI}(\mathrm{s})$		
	TE on silver chloride / silver bromide in (c)(i)		

Question Number	Acceptable Answer	Reject	Mark
20(d)	Curly arrow from lone pair on OH^{-}to carbon (of C-I) Curly arrow from C-I bond to the iodine or just beyond (can be scored from a transition state) Correct $\mathrm{S}_{\mathrm{N}} 1$ mechanism scores (2) IGNORE Dipoles even if incorrect Transition state / intermediate in $\mathrm{S}_{\mathrm{N}} 2$ mechanism Products, even if incorrect	Penalise incorrect carbon chain / missing hydrogens once only From $\mathrm{Na}-\mathrm{OH}$ OH:- Full charges	2

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{2 0 (e) (i)}$	Elimination		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 0 (e) (i i) ~}$	Propene		$\mathbf{1}$
	ALLOW Prop-1-ene IGNORE Alkene		

(Total for Question 20 = 16 marks)
(Total for Section B = 40 marks)

Section C

Question Number	Acceptable Answer	Reject	Mark
21(a)(i)	Electrons excited / promoted (to higher energy levels / orbitals by heat) ALLOW Raised/move / jump for excited (1) (Electrons) relax to lower energy levels / orbitals ALLOW Return / drop / fall / de-excite for relax Ground state for lower energy levels To score both M1 and M2 energy levels / orbitals must be mentioned somewhere IGNORE Reference to stability of excited / ground state Energy / photons emitted as (visible) light ALLOW Wavelength / frequency / radiation for energy Given out / released for emitted Visible range / region / spectrum for light (1) IGNORE ion or atom throughout	...by electricity / combustion / burning Pushed Reflected	3

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{2 1 (a) (i i) ~}$	Yellow-red	Just yellow	$\mathbf{1}$
	ALLOW Brick-red / red	Any mention of orange	

Question Number	Acceptable Answer	Reject	Mark
21(a)(iii)	Energy / frequency / wavelength (emitted) is outside the visible range / region / spectrum	..of the ions White light	$\mathbf{1}$
	ALLOW Photon / radiation / light for energy etc Too high / low / in the ultraviolet for outside Energy etc cannot be detected by the eye		

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{2 1 (b)}$	$\mathrm{CaCO}_{3}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$		$\mathbf{1}$
	ALLOW $\mathrm{H}_{2} \mathrm{CO}_{3}$ for $\left(\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}\right)$ Multiples IGNORE state symbols even if incorrect		

Question Number	Acceptable Answer	Reject	Mark
21(c)	Barium sulfate is (much) less soluble (in water) or reverse argument ALLOW Barium sulfate is insoluble Solubility of sulfates decreases down group		$\mathbf{1}$
	IGNORE Reference to hydration/lattice enthalpy Reference to reactivity		

Question Number	Acceptable Answer	Reject	Mark
21(d)(i)	Calcium ions / Ca^{2+} are larger than magnesium ions / Mg^{2+} ALLOW Calcium ions / Ca^{2+} have a lower charge density than magnesium ions / Mg^{2+} The calcium ions / Ca^{2+} polarise the $\mathrm{C}-\mathrm{O}$ bond / carbonate ion less ALLOW The calcium ions / Ca^{2+} distort (the electron cloud in) the carbonate ion less The C-O bond is less easily broken ALLOW More energy needed to break the bonds in the carbonate ion Bonds in the carbonate ion are less easily broken ALLOW Reverse arguments for magnesium ions / Mg^{2+} throughout		3

Question Number	Acceptable Answer	Reject	Mark
21(d)(ii)	moles of $\mathrm{CO}_{2}=\underline{1.626}(=0.06775)$ 24 Then Route 1 $\begin{align*} M_{\mathrm{r}} \text { metal carbonate } & =\frac{10.0}{} \\ = & 0.06775 \\ = & 147.6 \tag{1} \end{align*}$ TE on moles CO_{2} $\begin{gathered} A_{\mathrm{r}} \text { metal }(=147.6-60) \\ =87.6 \end{gathered}$ So the metal (ion) is $\mathrm{Sr}^{(2+)} /$ strontium TE on M_{r} metal carbonate provided nearest A_{r} is that of a group 2 element $\begin{aligned} & M_{r}=\frac{10.00 \times 24}{1.626}=147.6 \text { scores M1 and M2 } \\ & A_{r}=\frac{10.00 \times 24}{1.626}-60=87.6 \text { and Sr scores (3) } \end{aligned}$ OR Route 2 Mass metal $=10.00-0.06775 \times 60$ $\begin{equation*} =5.935(\mathrm{~g}) \tag{1} \end{equation*}$ TE on moles CO_{2} A_{r} metal $=\frac{5.935}{0.06775}=87.6$ So the metal (ion) is $\mathrm{Sr}^{(2+)} /$ strontium TE on M_{r} metal carbonate provided nearest A_{r} is that of a group 2 element Correct metal with no working scores (1) IGNORE SF except 1SF Units	Ra / radium Ra / radium	3

Question Number	Acceptable Answer	Reject	Mark
21(d)(iii)	$\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ ALLOW $\mathrm{CO}_{2}(\mathrm{aq})$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{aq})$	$\mathbf{1}$

Question Number	Acceptable Answer	Reject	Mark	
21(e)(i)	Methyl orange	(1)	Litmus and universal indicator	$\mathbf{2}$
	From yellow to orange			
M2 dependent on M1				
ALLOW				
Any acid-alkali titration indicators with red / pink				
correct colour change				
e.g.				
Phenolphthalein	(1)			
From pink to colourless ALLOW Any recognisable spelling of indicator	From red...			

| Question
 Number | Acceptable Answer | Reject | Mark |
| :--- | :--- | :--- | :--- | :---: |
| 21(e)(ii) | Mols of $\mathrm{HCl}=\frac{8.90 \times 0.05}{1000}$
 $=4.45 \times 10^{-4} / 0.000445$ | (1) | |

(Total for Section C = 20 marks)
(TOTAL FOR PAPER = 80 MARKS)

